JETIR.ORG
 ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JIUURNAL DF EMERGING TECHNDLDEIES AND INNDVATIVE RESEARCH (JETIR)

SOLUTION OF NON-LINEAR EXPONENTIAL DIOPHANTINE EQUATION $\left(x^{a}+1\right)^{m}+\left(y^{b}+1\right)^{n}=z^{2}$

${ }^{1 *}$ Deepak Gupta, ${ }^{2}$ Satish Kumar, ${ }^{3}$ Sudhanshu Aggarwal
${ }^{1}$ Research Scholar, Department of Mathematics, D. N. (P.G.) College, Meerut-250002, U.P., India
${ }^{2}$ Associate Professor, Department of Mathematics, D. N. (P.G.) College, Meerut-250002, U.P., India
${ }^{3}$ Assistant Professor, Department of Mathematics, National Post Graduate College, Barhalganj, Gorakhpur-273402, U.P., India
Email: ${ }^{1}$ deepakgupta1763@gmail.com, ${ }^{2}$ skg22967@gmail.com, ${ }^{3}$ sudhanshu30187@gmail.com *Corresponding Author

Abstract

In this paper, authors discussed the solution of non-linear exponential Diophantine equation $\left(x^{a}+1\right)^{m}+$ $\left(y^{b}+1\right)^{n}=z^{2}$, where x is a prime divisor of y such that either $x \equiv 3$ or $5(\bmod 8)$ and $a, b, m, n, y, z \in W$, here W is the set of whole numbers. Authors illustrate that this Diophantine equation has no solution in whole numbers.

KEY WORDS: Exponential Diophantine Equations; Quadratic Residue; Legendre Symbol.

MATHEMATICS SUBJECT CLASSIFICATION: 11D61, 11D72.

1.INTRODUCTION: Diophantine equation is an equation in which we discussed about only integer's solutions. The study of Diophantine equations is a major part of theory of numbers. In current years, many researchers work on the solution of exponential Diophantine equation of the form $p^{x}+q^{y}=z^{2}$, where p, q are distinct primes and x, y, z are non-negative integers. In [1], Acu proved that the Diophantine equation $2^{x}+5^{y}=z^{2}$ has only two solutions $\{x=3, y=0, z=$ $3\}$ and $\{x=2, y=1, z=3\}$. In [2], Asthana and Singh proved that the Diophantine equation $3^{x}+13^{y}=z^{2}$, where x, y, z are non-negative integers, has only four solutions which are $(x, y, z)=(1,0,2),(1,1,4),(3,2,14),(5,1,16)$.

In [3], Burshtein proved that the Diophantine equation $p^{x}+(p+4)^{y}=z^{2}$, where x, y, z are positive integers such that $x+y=2,3,4$ and $p,(p+4)$ are primes has unique solution $(p, x, y, z)=(3,2,1,4)$. In [4], Burshtein find all the solutions of the Diophantine equation $p^{x}+(p+6)^{y}=z^{2}$, where x, y, z are positive integers such that $x+y=$ $2,3,4$ and $p,(p+6)$ are primes. In [5], Gupta and Kumar discussed the exponential Diophantine equation $n^{x}+$ $(n+3 m)^{y}=z^{2 k}$, where n is a number of the form $(6 r+1)$ and $x, y, z, m, k, r \in W$.

In [6], Gupta and Kumar discussed the solution of exponential Diophantine equation $a^{u}+(a+5 b)^{v}=c^{2 w}$, where a is a number of the form $(5 r+1)$ and $u, v, w, b, c, r \in W$. In [7], Gupta et al. discussed the non-linear Diophantine
equation $p^{x}+(p+6)^{y}=z^{2}$, where p and $p+6$ both are primes and x, y, z are positive integers. In [8], Kumar et al. discussed the exponential Diophantine equation $601^{p}+619^{q}=r^{2}$, where $p, q, r \in W$. In [9], Kumar et al. discussed on the equation $p^{x}+(p+12)^{y}=z^{2}$ and show that under some conditions this equation has no solution in W. In [10], Kumar et al. discussed the non-linear Diophantine equations $31^{x}+41^{y}=z^{2}$ and $61^{x}+71^{y}=z^{2}$, where x, y, z are positive integers.

In [11], Mishra et al. studied the Diophantine equation $211^{\alpha}+229^{\beta}=\gamma^{2}$, where $\alpha, \beta, \gamma \in W$. In [12], Sroysang studied the Diophantine equation $31^{x}+32^{y}=z^{2}$ and show that this equation has no solution in W. In [13], Sroysang proved that the Diophantine equation $2^{x}+19^{y}=z^{2}$ has unique solution in W, which is $x=3, y=0, z=3$. In [14], Oliveria proved that the Diophantine equation $p^{x}+(p+8)^{y}=z^{2}$, where x, y, z are positive integers and $p, p+8$ are primes with $p>3$ has no solution.

In the present paper, authors proved that exponential non-linear Diophantine equation $\left(x^{a}+1\right)^{m}+\left(y^{b}+1\right)^{n}=$ z^{2}, where x is a prime divisor of y such that either $x \equiv 3 \operatorname{or} 5(\bmod 8)$ and $a, b, m, n, y, z \in W$, has no solution in W.

2. PRELIMINARIES:

Quadratic Residue

If a is an integer coprime to p, where p is a prime then a is said to be quadratic residue $(\bmod p)$ iff $x^{2} \equiv a(\bmod p)$ has a solution otherwise a is said to be quadratic non-residue $(\bmod p)$.

Legendre Symbol

If p is an odd prime and a is any integer such that g.c.d. $(a, p)=1$, then Legendre symbol $\left(\frac{a}{p}\right)$ is defined as

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{rr}
1, & \text { if a is a quadratic residue }(\bmod p) \\
-1, & \text { if a is a quadratic non }- \text { residue }(\bmod p)
\end{array}\right.
$$

Proposition: 2.1 If p is an odd prime, then

$$
\left(\frac{2}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \equiv 1(\bmod 8) \operatorname{or} p \equiv 7(\bmod 8) \\
-1 & \text { if } p \equiv 3(\bmod 8) \operatorname{or} p \equiv 5(\bmod 8)
\end{aligned}\right.
$$

3. MAIN THEOREM:

Theorem: 3.1 If x is a prime divisor of y such that either $x \equiv 3 \operatorname{or} 5(\bmod 8)$ then the non-linear exponential Diophantine equation $\left(x^{a}+1\right)^{m}+\left(y^{b}+1\right)^{n}=z^{2}$, has no solution in W, where $a, b, m, n, y, z \in W$.

Proof: We have $x \equiv 0(\bmod x)$
$\Rightarrow x^{a} \equiv 0(\bmod x)$
$\Rightarrow x^{a}+1 \equiv 1(\bmod x)$
$\Rightarrow\left(x^{a}+1\right)^{m} \equiv 1(\bmod x)$.

Since x is a factor of y, therefore, $y \equiv 0(\bmod x)$
$\Rightarrow y^{b} \equiv 0(\bmod x)$
$\Rightarrow y^{b}+1 \equiv 1(\bmod x)$
$\Rightarrow\left(y^{b}+1\right)^{n} \equiv 1(\bmod x)$.

Thus we obtain, $\left(x^{a}+1\right)^{m}+\left(y^{b}+1\right)^{n} \equiv 2(\bmod x)$
$\Rightarrow z^{2} \equiv 2(\bmod x)$.
Now, since x is an odd prime such that either $x \equiv 3 \operatorname{or} 5(\bmod 8)$, therefore we have $\left(\frac{2}{x}\right)=-1$
$\Rightarrow 2$ is a quadratic non-residue $(\bmod x)$
$\Rightarrow z^{2} \equiv 2(\bmod x)$ does not have a solution.

Hence, the equation $\left(x^{a}+1\right)^{m}+\left(y^{b}+1\right)^{n}=z^{2}$ has no solution in W.

Corollary: 3.1.1 The exponential Diophantine equation $\left(x^{a}+1\right)^{m}+\left(y^{b}+1\right)^{n}=w^{2 k}$, where x is a prime divisor of y such that either $x \equiv 3$ or $5(\bmod 8)$, has no solution in W, where $a, b, m, n, y, w, k \in W$.

Proof: Let $w^{k}=z$, then the exponential Diophantine equation $\left(x^{a}+1\right)^{m}+\left(y^{b}+1\right)^{n}=w^{2 k}$ becomes $\left(x^{a}+1\right)^{m}+$ $\left(y^{b}+1\right)^{n}=z^{2}$, which has no solution by Theorem 3.1.

Corollary: 3.1.2 The exponential Diophantine equation $\left(x^{a}+1\right)^{m}+\left(y^{b}+1\right)^{n}=(w+1)^{2 k}$, where x is a prime factor of y such that either $x \equiv 3$ or $5(\bmod 8)$, has no solution in W, where $a, b, m, n, y, w, k \in W$.

Proof: Let $(w+1)^{k}=z$, then the non-linear exponential Diophantine equation $\left(x^{a}+1\right)^{m}+\left(y^{b}+1\right)^{n}=(w+1)^{2 k}$ becomes $\left(x^{a}+1\right)^{m}+\left(y^{b}+1\right)^{n}=z^{2}$, which has no solution by Theorem 3.1.

Note: In this paper, we have shown that the Diophantine equation $\left(x^{a}+1\right)^{m}+\left(y^{b}+1\right)^{n}=z^{2}$, where x is a prime factor of y such that either $x \equiv 3$ or $5(\bmod 8)$ and $a, b, m, n, y, z \in W$, has no solution in W.
4. CONCLUSION: In this article, authors proved that the non-linear exponential Diophantine equation $\left(x^{a}+1\right)^{m}+$ $\left(y^{b}+1\right)^{n}=z^{2}$, where x is a prime divisor of y such that either $x \equiv 3 \operatorname{or} 5(\bmod 8)$ and $a, b, m, n, y, z \in W$, has no solution in W.

REFERENCES:

1. Acu, D. (2007) On a Diophantine equation $2^{x}+5^{y}=z^{2}$, General Mathematics, 15(4), 145-148.
2. Asthana, S. and Singh, M.M. (2017) On the Diophantine equation $3^{x}+13^{y}=z^{2}$, Int. J. Pure Appl. Math., 114(2), 301-304.
3. Burshtein, N. (2018) All the solutions of the Diophantine equation $p^{x}+(p+4)^{y}=z^{2}$ when $p,(p+4)$ are primes and $x+y=2,3,4$, Annals of Pure and Applied Mathematics, 16 (1), 241-244.
4. Burshtein, N. (2018) Solutions of the Diophantine equation $p^{x}+(p+6)^{y}=z^{2}$ when $p,(p+6)$ are primes and $x+y=2,3,4$, Annals of Pure and Applied Mathematics, 17(1), 101-106.
5. Gupta, D. and Kumar, S. (2020) On the solutions of exponential Diophantine equation $n^{x}+(n+3 m)^{y}=z^{2 k}$, International Journal of Interdisciplinary Global Studies, 14(4), 74-77.
6. Gupta, D. and Kumar, S. (2020) On the exponential Diophantine equation $a^{u}+(a+5 b)^{v}=c^{2 w}$, International Journal of Interdisciplinary Global Studies, 14(4), 233-236.
7. Gupta, S., Kumar, S. and Kishan, H. (2018) On the non-linear Diophantine equation $p^{x}+(p+6)^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 18(1), 125-128.
8. Kumar, A., Chaudhary, L. and Aggarwal, S. (2020) On the exponential Diophantine equation $601^{p}+619^{q}=r^{2}$, International Journal of Interdisciplinary Global Studies, 14(4), 29-30.
9. Kumar, S., Gupta, D. and Kishan, H. (2018) On the solutions of exponential Diophantine equations $p^{x}+$ $(p+12)^{y}=z^{2}$, International transactions in Mathematical Sciences and Computer, 11(1), 1-4.
10. Kumar, S., Gupta, D. and Kishan, H. (2018) On the non-linear Diophantine equations $31^{x}+41^{y}=z^{2}$ and $61^{x}+$ $71^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 18(2), 185-188.
11. Mishra, R., Aggarwal, S. and Kumar, A. (2020) On the existence of solution of Diophantine equation $211^{\alpha}+229^{\beta}=$ γ^{2}, International Journal of Interdisciplinary Global Studies, 14(4), 78-79.
12. Sroysang, B. (2012) On the Diophantine equation $31^{x}+32^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 81(4), 609-612.
13. Sroysang, B. (2013) More on the Diophantine equation $2^{x}+19^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 88(1), 157-160.
14. Oliveria, F.N. (2018) On the solvability of the Diophantine equation $p^{x}+(p+8)^{y}=z^{2}$ when $p>3$ and $(p+8)$ are primes, Annals of Pure and Applied Mathematics, 18(1), 9-13.
